Convergence of variational approximation schemes for elastodynamics with polyconvex energy

نویسندگان

  • Alexey Miroshnikov
  • Athanasios E. Tzavaras
چکیده

We consider a variational scheme developed by S. Demoulini, D. M. A. Stuart and A. E. Tzavaras [Arch. Rat. Mech. Anal. 157 (2001)] that approximates the equations of three dimensional elastodynamics with polyconvex stored energy. We establish the convergence of the time-continuous interpolates constructed in the scheme to a solution of polyconvex elastodynamics before shock formation. The proof is based on a relative entropy estimation for the time-discrete approximants in an environment of L-theory bounds, and provides an error estimate for the approximation before the formation of shocks. keywords: nonlinear elasticity, polyconvexity, variational approximation scheme. AMS Subject Classification: 35L70 74B20 74H20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of variational approximation schemes for three dimensional elastodynamics with polyconvex energy

We consider a variational scheme developed in [10] that approximates the equations describing the dynamics of three dimensional motions for isotropic elastic materials; these form a system of conservation laws. We establish the convergence of the time-continuous interpolates constructed in the scheme to a smooth solution of the elastodynamics system by adapting the relative entropy method to th...

متن کامل

Structural Properties of Stress Relaxation and Convergence from Viscoelasticity to Polyconvex Elastodynamics

We consider a model of stress relaxation approximating the equations of elastodynamics. Necessary and sufficient conditions are derived for the model to be equipped with a global free energy and to have positive entropy production, and the resulting class allows for both convex and non-convex equilibrium potentials. For convex equilibrium potentials, we prove a strong dissipation estimate and t...

متن کامل

A Stress Relaxation Model with Polyconvex Entropy Function Approximating Elastodynamics

The equations of polyconvex elastodynamics can be embedded to an augmented symmetric hyperbolic system. This property provides a stability framework between solutions of the viscosity approximation of polyconvex elastodynamics and smooth solutions of polyconvex elastodynamics. We devise here a model of stress relaxation motivated by the format of the enlargement process which formally approxima...

متن کامل

A Relaxation Theory with Polyconvex Entropy Function Converging to Elastodynamics

The equations of polyconvex elastodynamics can be embedded to an augmented symmetric hyperbolic system. This property provides a stability framework between solutions of the viscosity approximation of polyconvex elastodynamics and smooth solutions of polyconvex elastodynamics. We devise here a model of stress relaxation motivated by the format of the enlargement process which formally approxima...

متن کامل

Stress Relaxation Models with Polyconvex Entropy in Lagrangean and Eulerian Coordinates

The embedding of the equations of polyconvex elastodynamics to an augmented symmetric hyperbolic system provides in conjunction with the relative entropy method a robust stability framework for approximate solutions [18]. We devise here a model of stress relaxation motivated by the format of the enlargement process which formally approximates the equations of polyconvex elastodynamics. The mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013